
This session introduces a very current technology for doing data analysis used widely in
academia and industry: R. As well as learning what R is — its history and use — you will begin
to perform some exploratory analysis in R on a real (spatial) dataset. The interface through
which you’ll interact with R is called RStudio. Both R and RStudio are free to use.

This first session provides much introductory material and discussion — it requires some
reading. Next week’s session will assume greater knowledge/familiarity and will be more task
focussed.

By the end of this session you should be able to:

• open R using the RStudio Graphical User Interface (GUI)

• install and enable R libraries and query library documentation

• read in .csv files as R DataFrames

• perform data wrangling activities on R DataFrames

• calculate summary statistics over R DataFrames

• create statistical graphics using the ggplot2 library

• generate a Choropleth map in R using the tmap library

A print version of this document can be downloaded from [this link]

Introduction

For the next three sessions we’ll be learning about two very current technologies for doing spatial
data analysis: R and Tableau. Both have origins in academia — statistics and computer science
respectively — but are now global in reach and used by an increasingly impressive number of
organisations.

Figure 1: Data science job trends for R (blue) and SAS (orange). In Munchen, R. (online)

1

http://homepages.see.leeds.ac.uk/~georjb/ppd/r/session_01.pdf
https://www.r-project.org
https://www.tableau.com
http://r4stats.com/articles/popularity/

There is not sufficient time to discuss the fundamentals of the R language in depth. Rather, these
sessions aim to give you a flavour of the technologies and the most useful software and libraries for
interacting with them.

What is R?

R is a free, open statistical programming language and environment. Released as open source
software as part of a research project in 1995, for some time R was the preserve of academics. From
2010s onwards, with the advent of Big Data and new sub-disciplines such as Data Science, R enjoyed
rapid growth and is used increasingly outside of academia, by organisations such as Google
[example], Facebook [example], Twitter [example], New York Times [example] and many more.

Rather than simply a free alternative to proprietary statistical analysis software such as SPSS, R is a
programming language in and of itself and can be used for:

• Data Visualization design: PopulationLines

• Developing interactive (visualization) software: UpSet

• As a GIS: Geocomp with R

• As a word processor / web publisher: R Markdown

Why R?

2

https://research.google.com/pubs/pub37483.html
http://flowingdata.com/2010/12/13/facebook-worldwide-friendships-mapped/
https://blog.twitter.com/official/en_us/a/2013/the-geography-of-tweets.html
http://www.nytimes.com/interactive/2012/05/05/sports/baseball/mariano-rivera-and-his-peers.html?ref=baseballexample
http://spatial.ly/2014/08/population-lines/
https://gehlenborglab.shinyapps.io/upsetr/
http://robinlovelace.net/geocompr/
http://rmarkdown.rstudio.com/gallery.html

Free, open-source with an active community

The cost motive is obvious, but the benefits that come from being fully open-source, with a critical
mass of users are many.

Firstly, there is a burgeoning array of online forums, tutorials and code examples through which to
learn R. StackOverflow is a particularly useful resource for answering more individual questions.

Second, with such a large community, there are numerous expert R users who themselves
contribute by developing libraries or packages that extend its use.

An R package is a bundle of code, data and documentation, usually hosted
centrally on the CRAN (Comprehensive R Archive Network). A particularly
important, though very recent, set of packages is the tidyverse: a set of libraries
authored mainly by Hadley Wickham, which share a common underlying
philosophy, syntax and documentation.

R supports modern data analysis workflows

Reproducible research is the idea that data analyses, and more generally,
scientific claims, are published with their data and software code so that
others may verify the findings and build upon them.

— Roger Peng, Jeff Leek and Brian Caffo

In recent years there has been much introspection around how science works — around how
statistical claims are made from reasoning over evidence. This came on the back of, amongst other
things, a high profile paper published in Science, which found that of 100 recent peer-reviewed
psychology experiments, the findings of only 39 could be replicated. The upshot is that researchers
must now make every possible effort to make their work transparent. In this setting, traditional
data analysis software that support point-and-click interaction is unhelpful; it would be tedious to
make notes describing all interactions with, for example, SPSS. As a declarative programming
language, however, it is very easy to provide such a provenance trail for your workflows in R since
this necessarily exists in your analysis scripts.

Concerns around the reproducibility crisis are not simply a function of transparency in
methodology and research design. Rather, they relate to a culture and incentive structure whereby
scientific claims are conferred with authority when reported within the (slightly backwards) logic
of Null Hypothesis Significance Testing (NHST) and p-values. This isn’t a statistics session, but for an
accessible read on the phenomenon of p-hacking (with interactive graphic) see this article from the
excellent FiveThirtyEight website. Again, the upshot of all this introspection is a rethinking of the
way in which Statistics is taught in schools and universities, with greater emphasis on
understanding through computational approaches rather than traditional equations, formulas and
probability tables. Where does R fit within this? Simply put: R is far better placed than traditional
software tools and point-and-click paradigms for supporting computational approaches to
statistics — with a set of methods and libraries for performing simulations and permutation-based
tests.

3

https://stackoverflow.com/questions/tagged/r
http://www.tidyverse.org
http://hadley.nz
http://science.sciencemag.org/content/349/6251/aac4716
https://fivethirtyeight.com/features/science-isnt-broken/#part1
http://fivethirtyeight.com

Task 1. Get familiar with the R and RStudio

environment

Open RStudio

Figure 2: Example RStudio interface.

Instructions

Open RStudio. Click File → New File → R Script.

You should see a set of windows roughly similar to those in the figure above. The top left pane is the
Code Editor. This is where you’ll write, organise and comment R code for execution. Code snippets
can be executed using Run at the top of the RStudio pane or typing cmd R (Mac) ctr R (Windows).
Below this, in the bottom left pane is the R Console, in which you write and execute commands
directly. To the top right is a pane with the tabs Environment and History. The purpose of these will
soon be clear. In the bottom right is a pane for navigating through project directories (Files),
displaying Plots, details of installed and loaded Packages and documentation on the functions and
packages you’ll use (Help).

Type some console commands

You’ll initially use R as a calculator by typing commands directly into the Console. You’ll create a
variable (x) and assign it a value using the assignment operator (←), then perform some simple
statistical calculations using functions that are held within the (base) package.

4

Create variable and assign a value.

x <- 4

Perform some calculations using R as a calculator.

x_2 <- x^2

Perform some calculations using functions that form baseR.

x_root <- sqrt(x_2)

Instructions

Type the commands contained in the code block above into your R Console.

The base package is core and native to R. Unlike all other packages, it does not need
to be installed and called explicitly. One means of checking the package to which a
function you are using belongs is to call the help command (?) on that function: e.g.
?mean().

Install some packages

In these introductory sessions, you’ll mainly be using a collection of packages that form part of the
so-called tidyverse. Do read some of the documentation provided from the project website to learn
more around its philosophy. The packages together provide a very intuitive means of interacting
with R and support analysis tasks that form most Data Science workflows.

There are two steps to making packages available in your working environment.
install.packages(<package-name>) downloads the named package from a repository,
library(<package-name>) makes the package available in your current session.

Instructions

Type into your R Console: install.packages("tidyverse"), then library(tidyverse).

Read in some data

The sessions will cover a somewhat depressing, though very current, topic: the UK’s referendum
vote on membership of the EU. You’ll start by exploring the results data published at Local
Authority level and made available in .csv form by The Elecctoral Commission. You’ll do so using
the readr package (part of the tidyverse).

5

http://www.tidyverse.org
http://r4ds.had.co.nz/introduction.html
https://www.electoralcommission.org.uk

Exploratory analysis of Brexit data.

#

Author: <your-name>

#####################################

Load required packages.

install.packages("rmapshaper")

library(rmapshaper)

install.packages("tidyverse")

library(tidyverse)

install.packages("sf") # New SimpleFeatures package for working with spatial data.

library(sf)

install.packages("tmap") # tmap library, which uses syntax very similar to ggplot2.

library(tmap)

Read in results data. Note that the read_csv method belongs to the readr

package. Whilst the baseR equivalent read.csv is also fine, read_csv reads in

data as a special class of data frame (tibble).

referendum_data <-

read_csv("http://www.electoralcommission.org.uk/__data/assets/file/0014/212135/EU-

referendum-result-data.csv")

Instructions

In the editor pane of RStudio write the code and comments in the block above. Execute by
clicking run or cmd+r (Mac) ctr+r (Windows). Then save the R script with an appropriate
name like brexit_analysis.R.

Notice that the results data now appears under the Data field of the Environment pane. It is stored as
a data frame — a spreadsheet-like representation where rows correspond to individual
observations and columns act as variables. You can inspect a data frame as you would a
spreadsheet by typing View(<dataframe-name>) or by pointing and clicking on the named data frame
in the Environment pane. You can also get a quick view on a data frame’s contents by typing
glimpse(<dataframe-name>).

Task 2. Perform some exploratory data

analysis

Do some data wrangling

Data wrangling type operations are supported by functions that form the dplyr package. Again,
dplyr is within the family of packages that comprise the tidyverse. Its functions have been named
with verbs that neatly describe their purpose — filter(), select(), arrange(), group_by(),
summarise() and more. The pipe (%>%) is a particularly handy operator that allows calls to these

6

functions to be chained together.

Calculate the LA share of Leave vote by Region.

region_summary <- referendum_data %>%

 group_by(Region) %>%

 summarise(share_leave=sum(Leave)/sum(Valid_Votes)) %>%

 arrange(desc(share_leave))

print(region_summary)

Instructions

Add the code block to your R script and Run only that block above. Run
View(region_summary). Given the result that’s printed to your R Console, consider each line
in the code block. Hopefully you will appreciate that chaining functions in this way (e.g.
using %>%) enables you to construct quite expressive code.

Individual coding task

Create two new variables in referendum_data — one named share_leave and one named
margin_leave. share_leave should express the Leave vote as a share of valid votes cast;
margin_leave should contain the direction and size of margin of the Leave vote share. You
will need to make use of the dplyr function mutate(). Hint: to compute the size of margin,
you will need to do some basic subtraction on the share_leave variable. Again, check that
you have correctly created the variables by running View(referendum_data).

Create some summary graphics

Figure 3: Size of margin in favour of Leave:Remain by UK Local Authority.

ggplot2 is a powerful and widely used package for producing statistical graphics — and again a
package that is core to the tidyverse. It has a very strong theoretical underpinning, based on a
framework for data visualization known as The Grammar of Graphics (Wilkinson 2005). The general
approach is of treating graphical elements separately and building features in a series of layers.

7

http://www.springer.com/gb/book/9780387245447

Code for creating additional variables (from the individual coding task).

referendum_data <- referendum_data %>%

 mutate(share_leave=Leave/Valid_Votes,

 margin_leave=share_leave-0.5)

Create ordered bar chart of result ordered by LA.

referendum_data %>%

 filter(Area!="Gibraltar") %>%

 ggplot(aes(x=reorder(Area,-share_leave), y=margin_leave, fill=margin_leave))+

 geom_bar(stat="identity", width=1)+

 scale_fill_distiller(palette = 5, type="div", direction=1, guide="colourbar",

limits=c(-0.3,0.3))+

 scale_x_discrete(breaks=c("Lambeth","Slough","Boston")) +

 geom_hline(aes(yintercept=0))+

 theme_classic()+

 xlab("LAs by Leave (asc)")+

 ylab("Margin Leave/Remain")

Instructions

Add the code block above to your R Script and run. You should hopefully see in the Plots

window a graphic closely resembling Figure 3.

Individual coding task

Try experimenting with the ggplot2 layers for yourself. You might want to start with a
simpler plot — for example the code code block below, which produces a bar chart of the
share of Leave vote by Region. Here vote share is mapped to bar length, but the bars are
unordered and colour is not mapped to any data characteristic. Think about the ideas used
in the LA-level bar chart to make a more data-rich graphic. Hint: if you were to order your
bar chart by the Leave vote, you would want to reorder the x (category axis) using the
function reorder(Region,share_leave).

Code for simple bar chart of regional summary data.

region_summary %>%

 ggplot(aes(x=Region, y=share_leave))+

 geom_bar(stat="identity")

It is completely understandable if at this point you think somewhat tedious the
whole idea of generating code to describe your graphics. However, once you learn
how to construct graphics in this way — once you learn the ggplot2 grammar — it
is possible to very quickly generate relatively sophisticated exploratory graphics.
That the grammar forces you to think more abstractly about data type and visual
mapping is an important point. It introduces you to a key tenet of Information
Visualization theory (Semiology of Graphics) by stealth, but also encourages you to
think in depth about your data, its structure and (since you’re producing graphics)
the insights that can be made from visualizing that structure.

8

http://esripress.esri.com/display/index.cfm?fuseaction=display&websiteID=190

Task 3. Perform some exploratory spatial

data analysis

Load in some spatial (and other attribute) data

A pre-prepared R script that loads spatial and 2011 Census data that we'll use

for the remaining sessions.

source("http://homepages.see.leeds.ac.uk/~georjb/ppd/r/src/load_data.R")

Instructions

Add the code block above to your R Script and run. This might take a while to execute. You
should hopefully see in the Data window a new data frame called data_gb.

The data frame we’ve called data_gb is a special class of data frame to the extent
that it contains a list-col variable (called geometry) in which are stored
coordinates defining the spatial extent of Local Authority boundaries. Storing
spatial information in this way is made possible by a very new Simple Features (sf)
package. The details of this package and of spatial data handling in R are beyond
the scope of this introductory session. If you are keen to push on with R, it is worth
exploring how the boundary data is loaded and linked to the Census attribute data
by downloading the load_data.R script. Also worth investigating is Geocomputation
with R, a book currently in preparation and authored by Robin Lovelace (of Leeds)
and others.

Explore spatial variation in the Leave:Remain vote

In this section, you will analyse variation in EU referendum voting behaviour by Local Authority by
generating various Choropleth maps. You will do so using the tmap package: a new, user-friendly
library that adopts a syntax very similar to that of ggplot2.

The general form of a tmap specification:

• A data frame containing a geometry field (sfc_MULTIPOLYGON) must be supplied to tm_shape().

• To tm_fill(), we identify the variable values on which polygons should be coloured as well as
information such as the colour mapping (sequential, diverging or continuous) and palette to
use.

• tm_layout() provides control over titles, legends etc.

9

http://homepages.see.leeds.ac.uk/~georjb/ppd/r/src/load_data.R
http://robinlovelace.net/geocompr/
http://robinlovelace.net/geocompr/
http://robinlovelace.net
https://github.com/mtennekes/tmap

Generate a choropleth displaying share of leave vote by Local Authority area.

tm_shape(data_gb) +

 tm_fill(col="share_leave", style="cont", size=0.2, id="geo_label", palette="Blues",

title="") +

 tm_borders(col="#bdbdbd", lwd=0.5) +

 tm_layout(

 title="LA share of Leave vote",

 title.snap.to.legend=TRUE,

 title.size=0.8,

 legend.text.size=0.6,

 title.position = c("right", "center"),

 legend.position = c("right","center"),

 frame=FALSE,

 legend.outside=TRUE)

Instructions

Add the code block to your R script Run. You should see a map resembling that in the left
of Figure 3.

Individual coding task

Create a new Choropleth that displays the margin in favour of Leave:Remain (a spatial
equivalent of Figure 4). You will need to affect the column (col=) to which tm_fill() maps,
as well as the palette= that is used (it should be "RdBu"). Remember, if you need more
information about parameter options type ?<method-name> into the R Console. Your map
should look similar to the second map from the left in Figure 4.

Individual coding task

An obvious problem with displaying social phenomena on a conventional map is that
visual salience is given to rural areas where relatively few people live, with patterns in
urban areas de-emphasised. A partial solution is to split our map on the Region variable,
resulting is a set of small multiple choropleths. This can be achieved with a call to
tm_facets(<"variable-name">). Adapt your code used to generate the choropleth map with
this addition (e.g. + tm_facets("Region", free.coords=TRUE)). You should end up with a
map resembling the second from the right in Figure 4.

Instructions

An alternative and more direct approach to dealing with the salience bias of rural areas is
through a cartogram. Cartograms allow spatial units (Local Authorities in this case) to be
sized according to the phenomena of interest. Copy the code block below to create a
cartogram similar to that presented in the right of Figure 4.

10

https://en.wikipedia.org/wiki/Cartogram

Install cartogram package.

install.packages("cartogram")

library(cartogram)

Convert from sf to sp format (supported by cartogram).

sp_gb <- as(data_gb, 'Spatial')

Construct a new data frame, using the cartogram() function, passing as a

parameter into the function the variable to which polygons are to be sized:

Electorate (number of voters in LA). This may take a while.

sp_gb <- cartogram(sp_gb, "Electorate", itermax=10)

Generate a choropleth using the same specification used in the conventional map,

but supplying the cartogram SpatialDataFrame to tm_shape:

e.g. tm_shape(sp_gb) +

etc.

Figure 4: Choropleths displaying the Leave:Remain vote by UK Local Authority.

A cool feature of the tmap library is that it has an interactive mode, providing
slippy map type functionality. This can be set with tmap_mode("view"). Enter this
line into the R Console and then re-run the code that generates the Choropleth. To
reset back to static mode use tmap_mode("plot").

Task 4. Data challenge

Despite seeing various iterations of these maps in the weeks after the referendum, the very obvious
contrast between most of England & Wales (Leave) and Scotland and London, as well as certain
university cities and towns (Remain), is surprising. Notice the spot of dark red in the East of
England representing Cambridge.

11

http://wiki.openstreetmap.org/wiki/Slippy_Map

Individual coding task

Can you come up with hypotheses as to why these differences in voting behaviour exist?
Might the differences relate to differing characteristics of the underlying population? Try
plotting choropleth maps of some of the Census variables that are stored in the data_gb
data frame. Do ask if you need help with wrangling R or the tmap library.

Instructions

Once you have finished your data analysis, save the R session with a sensible name by
selecting Session, Save Workspace As …, provide a sensible name and save to a sensible
directory so that it can be returned to in the next lab.

Task 5. Coding exercises (optional)

Once you have finished exploring spatial structure in these demographics, try to develop your R
skills by performing the coding operations listed below.

Individual coding task

Try writing commands to:

• Calculate the share of Leave vote for the whole of GB.

• Find the Local Authority (LA) with the highest and lowest share of Leave vote.

• Find the top 10 LAs most in favour of Leave and top 10 most in favour of Remain.

• Advanced Use ggplot2 to generate box plots displaying distributions of the Census
variables.

Further reading

There is a burgeoning set of books, tutorials and blogs introducing R as an environment for applied
data analysis. Detailed below are resources that are particularly relevant to the material and
discussion introduced in this session.

R for data analysis

• Wickham, H. & Grolemund, G. (2017), R for Data Science, O’Reilly. The primer for doing data
analysis with R. Hadley presents his thesis of the data science workflow and illustrates how R
and packages that form the Tidyverse support this. It is both accessible and coherent and is
highly recommended.

• Lovelace, R., Nowosad, J. & Muenchow, J. (in preparation) Geocomputation with R, CRC Press.
Currently under development but written by Robin Lovelace (University of Leeds) and others,
this book comprehensively introduces spatial data handling in R. It is a great complement to R
for Data Science in that it draws on brand new libraries that support Tidyverse-style operations
on spatial data.

12

• Healey, K. (in preparation), Data Visualization for Social Science: A practical introduction with R
and ggplot2. This is a new resource, still under development. From what I’ve seen, it’s an
engaging read that manages to integrate key Information Visualization theory and using real
social science datasets.

• Kay, M. & Heer, J. (2016) Analysis code for "Beyond Weber’s Law: A Second Look at Ranking
Visualizations of Correlation". Reading others' data analysis using R is often instructive. Matt
Kay, who has research interests in usable statistics and the reproducibility crisis, routinely
publishes full data analysis code and documentation for his research papers.

New Statistics and the reproducibility crisis (non-

essential)

• Aschwanden, C. & King, R. (2015) Science Isn’t Broken: It’s just a hell of a lot harder than we give
it credit for. A lovely take on the reproducibility crisis, published on FiveThirtyEight with an
excellent interactive graphic.

• Cumming, G. (2013) The New Statistics: Why and How. Geoff Cumming exposes common
misconceptions associated with NHST and makes a case for a New Statistics, centred on
estimation-based approaches. Despite the pre-historic graphics, his dance of the p-values video
is well worth a watch.

13

	Session 01: Introduction to R I
	Table of Contents
	Introduction
	What is R?
	Why R?
	Free, open-source with an active community
	R supports modern data analysis workflows

	Task 1. Get familiar with the R and RStudio environment
	Open RStudio
	Type some console commands
	Install some packages
	Read in some data

	Task 2. Perform some exploratory data analysis
	Do some data wrangling
	Create some summary graphics

	Task 3. Perform some exploratory spatial data analysis
	Load in some spatial (and other attribute) data
	Explore spatial variation in the Leave:Remain vote

	Task 4. Data challenge
	Task 5. Coding exercises (optional)
	Further reading
	R for data analysis
	New Statistics and the reproducibility crisis (non-essential)

